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The generation of nonlinear modulated waves is investigated in the framework of hydrodynamics using a
model of coupled oscillators. In this model, the separatrices between each pair of vortices may be viewed as
individual oscillators and are described by a phenomenological one-dimensional discrete complex Ginzburg-
Landau equation involving first- and second-nearest neighbor couplings. A theoretical approach based on the
linear stability analysis predicts regions of modulational instability, governed by both the first and second-
nearest neighbor couplings. From numerical investigations of different wave patterns that may be driven by the
modulational instability, it appears that analytical predictions are correctly verified. For wave number in the
unstable regions, an initial condition whose amplitude is slightly modulated breaks into a train of unstable
patterns. This phenomenon agrees with the description of amplification of the spectral component of the

perturbation and its harmonics, as well.
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I. INTRODUCTION

A well-known mechanism of pattern formation is the
modulational instability (MI) [1,2] of wave trains against
weak perturbations. The realization of this instability spans a
wide range of fields, from fluid dynamics [1] (where it is
usually referred to as Benjamin-Feir instability) and nonlin-
ear optics [3,4] to Plasma Physics [5]. One of the earliest
contexts in which its significance was pointed out was the
linear stability analysis of deep water waves [1]. The phe-
nomenon involves both continuous and discrete systems and
consists of the exponential growth of the amplitude of a
(quasi)monochromatic wave propagating in a weak nonlinear
dispersive medium, leading to a wave breakup in either
space or time. Since this disintegration typically occurs in
the same parameter region where bright solitons are ob-
served, MI is considered, to some extent, as a precursor to
the formation of solitons [6]. In particular, temporal MI has
been observed in optical fibers [7] as well as its spatial coun-
terpart, namely nonlinear Kerr [8], quadratic [9], and biased
photorefractive [10] media with both coherent and partially
coherent beams.

Recently, the behavior of nonlinear discrete systems has
received considerable attention in fields like biology [11],
optics [12], solid state physics [13], Bose-Einstein conden-
sates [14], and hydrodynamics [15,16]. Linear properties of
this class of systems are strongly modified and, as a result,
their nonlinear response is known to exhibit features that are
otherwise unlikely in the bulk/continuous regime [17]. In
some cases, these systems can be described by discrete
Ginzburg-Landau (DGL) models [15,16,18]. Since the pio-
neering work of Newell and Whitehead [19], as well as Segel
[20], the complex Ginzburg-Landau model has gained inter-
est over the last three decades in connection with its appli-
cation in various branches of physics. This equation is rather
general compared with the nonlinear Schrodinger equation,
since it includes dispersive and nonlinear effects in both con-

1539-3755/2005/72(3)/036220(9)/$23.00

036220-1

PACS number(s): 89.75.Kd, 05.45.—a, 89.75.Fb, 47.54.+r

servative and dissipative forms. Indeed, DGL models have
been considered in the literature to describe many nonequi-
librium phenomena in physical systems such as discrete soli-
tons [21], arrays of a semiconductor laser in nonlinear optics
[18], Taylor and frustrated vortices in hydrodynamics [15].
In this last context, a set of experiments have been performed
in a linear array of vortices to characterize ordered states,
and interesting phenomena have been observed such as
short-wavelength instability [22], frustration [15], and spa-
tiotemporal intermittency [23].

Experiments on a linear array of vortices in a shallow
conducting fluid have been recently carried out by Willaime
et al. [15,22]. These experiments were carried out on a cell
of rectangular cross sections subjected to a magnetic field.
The cell is filled with a working fluid [24] and, in the bottom,
a groove of 20 mm wide, with a variable depth, is machined.
A steady electric current is imposed along the cell and the
resulting magnetic force, which is spatially periodic, induces
recirculating flows. Thus, a linear array of counter-rotating
vortices whose number varies is obtained. As the electric
current is increased, the system undergoes a transition from a
state composed of counter-rotating vortices to a state where
all the vortices have the same sign and are twice as large.
The shadowgraph method is used to visualize the separa-
trices between the vortices; and, in turn, the spatiotemporal
dynamics of the system. Due to the one-dimensional geom-
etry and to the fact that vortices are produced by a forcing
mechanism, the separatrices between the pair of vortices may
be viewed as individual oscillators. Therefore, the system
can be described theoretically by a chain of the coupled os-
cillator. The dynamics of individual oscillators is character-
ized by a complex number W,(7), i.e., an amplitude and a
phase. Moreover, in agreement with the experiment, each of
them results from a Hopf supercritical bifurcation. As con-
cerns the interaction with the lattice, both linear and nonlin-
ear first- and second-nearest-neighbor couplings have been
taken into account. One thus gets the following phenomeno-
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logical discrete complex Ginzburg-Landau (DCGL) equation
[15] governing the evolution of the system:

aw,
d—t" = w1 +ico)W, = (1 +icy)|W,|*W, = (c5 + icy)

X(\W,_i]* + Wi DWW, + e(1 +ic) )W,y + W,_))
+8,(1+iC{)(W,1+2+Wn_2), (1)

where u=(I-1.)/1.. Here, u is the control parameter of the
system and /. is the threshold value. When the threshold
value is fixed, we can vary I, i.e., u. The coefficients ¢, ¢y,
€y, C3, Cy, €, ci, and &’ are real. Parameters of the model have
been measured for two depths 2 and 3 mm [23]. In the case
where the fluid thickness is 2 mm, the second-nearest-
neighbor couplings were effectively weak enough to give
rise to frustration. Therefore as a rough approximation, frus-
tration can be neglected at least for the lattice sizes consid-
ered. The equation governing the evolution of the system in
this case is obtained from Eq. (1) with &’=0. Frustrated
states have been studied for many years in other contexts,
such as spin glasses. However, it is only recently that their
existence was proven in hydrodynamics [15]. In this last
context, frustrated states are obtained for a depth of the
groove of 3 mm, when &’ is negative and larger in absolute
value than &/4.

Like every nonlinear system, the model equation (1) can
exhibit an instability that leads to self-induced modulation of
an input plane wave with the subsequent generation of pat-
terns. Modulational instability in discrete nonlinear
Schrodinger-like lattices was first predicted in the first Bril-
louin zone [12]. Very recently, the first experimental obser-
vation of discrete modulational instability has been reported
[25]. In view of the fact that discrete MI can occur in many
physical systems, it is of fundamental importance to study it
as it stands as a precursor phenomenon to the formation of
discrete soliton [26]. It should be emphasized that discrete
solitons are intrinsically highly localized [12].

Our purpose in this paper is to investigate the best condi-
tions under which different wave patterns can emerge during
the evolution of the wave, given an appropriate choice of the
wave numbers in the system. The outline of the paper is as
follows. In Sec. II, we examine MI as a function of the wave
numbers in order to gain insight into the formation of pat-
terns. We present numerical results for the MI of a plane
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wave in Sec. III and discuss their consistency with theoreti-
cal predictions. Section IV is devoted to concluding remarks.

II. LINEAR STABILITY ANALYSIS

To analyze the MI in the framework of the DCGL equa-
tion, we consider a first-order perturbation of harmonic
waves [27] and seek the condition for their stability (insta-
bility). The DCGL equation is an appropriate amplitude
equation to describe the pattern formation near a supercritical
Hopf bifurcation [28,29] and, the slow dynamics near a su-
percritical transition to unidirectional traveling waves
[28,29]. At the transition point, the most unstable mode is
either an acoustical mode for a positive value of & (where all
the oscillators are in phase), or an optical mode for a nega-
tive value of & (where each oscillator is out of phase with
respect to its nearest neighbors). Since the temporal phase of
such modes is defined only through an arbitrary constant,
one can look for the instability which breaks the correspond-
ing transition invariance. Oscillatory media near the Hopf
bifurcation generally admit a family of traveling waves of
the form

W, (1) = Wy exp(i6,), with 6,(1)=gna-wt, (2)

where ¢ denotes the wave number of the carrier wave. The
frequency w and the initial amplitude W, obey the nonlinear
dispersion relation,

=— ucy+ (cy+2¢,)|Wo|* = 2&c; cos(qa) — 2&’c| cos(2qa),

(1+2¢3)|Wy|> = u+ 28 cos(ga) + 2&’ cos(2ga).  (3)

Oscillators n and n+1 are separated by the equilibrium dis-
tance a. To determine the parameter space in which the non-
linear plane waves are unstable, we carry out a linear stabil-
ity analysis of these solutions by considering the perturbed
solution as

Wn(t) = (WO + bn)exp[i(an + lpn)]’ (4)

where functions b,=b,(t) and i,= (1) are assumed to be
small compared to the amplitude and phase of the carrier
wave, respectively. After the substitution of Eq. (4) into Eq.
(1), and linearization with respect to b, and i, one obtains
the following equation describing the evolution of the pertur-
bations b, and ¢,

4 iWy— == [1 +2c3 + i(ca+ 2¢4) |Wo |2 (b, + b)) = (c3+ ica) () + by_y = 2b,+ b, + b, | —2b,) + &(1 +icy)

d
ot ot

XL (D1 + by = 2b,) + iWo (i1 + oy — 24,) cos(qa) + [i(by4y = bymy) = Wo(sy — 1) Isin(ga) }
+ 8’(1 + ici){[(bn+2 + bn—2 - an) + iWO(‘//;HZ + lpn—Z - 2%)]003(290)
+[i(b40 = by—a) = Wo($h42 = ¥,-2) Isin(2ga)}, (5)
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in which () refers to complex conjugates of variables. So-
lutions of Eq. (5) that are a combination of progressive and
regressive plane waves can be looked into

(bn ) (b, b, ) ( i(Ona + Q) )
= exp| . w8 ]
iy P —i(Qna+Q1)
where by, by, ¥, and i, are real constants. The wave number

Q and the frequency () characterize linear properties. The
frequency () can be written as

0=0Q,+io, (6)

where (), and o are real constants, (), can be chosen equal to
w by using the nonlinear dispersion relation (3). Inserting Eq.
(6) into the expression of the perturbation helps in under-
standing the behavior of the system under the perturbation.
Indeed, this operation gives

bn(l) — blei[(Q,+i(r)r+Qna] + bze—i[(ﬂr—irr)HQna] — b]e—(rtei(QrHQna)

+ bze—ote—i(ﬂrHQna)' (7)

It can be noticed that ¢~" enters inside the amplitude of the

perturbation. The asymptotic behavior of the perturbation is
related to the sign of the constant o. Hence, the real constant
o can be considered as a measure of the growth rate of the
perturbation. Substituting this perturbation into Eq. (5) leads
to a linear and homogeneous algebraic system (see Appendix
(Al). As the emphasis is on nontrivial solutions, the deter-
minant of the system has to be equal to zero. This can be
translated into the following algebraic equation in o

0'4'|'K30'3 +K20'2+K10'+K0=0, (8)

where coefficients K j(j =0,...,3) are real and expressed in
Appendix (A3). In order to obtain solutions of Eq. (8) and
more precisely their nature (i.e., complex or real), successive
transformations of this equation are carried out. If the trans-
formation o — o+u (where u is equal to K3/4) is applied in
Eq. (8), the following equation is obtained:

o' +K)o? + Kjo+K{=0. 9)

Coefficients Kj, K|, and K, depend on K, K|, K, and K3,
and are expressed in Appendix (A4). From the Ferrari for-
mulas [29], all solutions o;(j=1,...,4) of Eq. (9) can be
written as follows:

o1=[(p- K" +(6-K)"* + (£~ K)'"*)/2, (10a)

oy=[-(p-K})'"* = (6-K3)'"* + (§- K})"?/2,
(10b)

o3=[(p- K" = (6-K)"* + (£~ K)'"*)2, (10¢c)

oy =[(p—K)" - (6K} - (- K3)"*2, (10d)

where p, §, and & are the solutions of the following cubic
equation o°—Kj0°—4K,o+4K,K,—(K{)*=0. Now, one ap-
plies the transformation o— o+u, where u is now equal to
(K3/3) in the previous cubic equation to remove the term to
the power two in o. This operation leads to
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@ +Kjo+Ky=0, (11)

with K, K/ real constants, which are defined in Appendix
(AS). Equation (11) has three solutions o7(11),02(11), T3(11)
defined as follows [29]:

o1y = (P_Ké/3), Or11) = (f—Kﬁ/3),

From the above stability analysis, the dispersion relation
of the system has been obtained as a fourth-order polyno-
mial, whose solutions are described in relation (8). In order
to define the asymptotic behavior of the traveling wave so-
lution, we need to specify the sign of the growth rates o, i.e.
the sign of solution (10). If the expression [4(K))?
+27(K()*] is positive, two solutions of relation (12) are com-
plex and the other real. As a reminder, each solution of rela-
tion (10) depends on the three solutions o1y, 0511y, 0311
[see Appendix (A6)]. Consequently, when one of these three
solutions is complex, this implies that all solutions defined
by Eq. (10) must be complex, i.e., the growth rate is a com-
plex number. But, the real value of the growth rates as de-
fined by Eq. (6) is the concern of this section. On the other
hand, when the expression [4(K’)?+27(K()?] is negative, the
three solutions o1y, 0511y, 0311y are real. If one of them is
less than 2K}/3 [see Appendix (A6)], all the solutions de-
fined by Eq. (10) will be complex, due to the presence of a
negative number under the square root. But, if each of them
is greater than 2K;/3 [see Appendix (A6)], all the solutions
defined by Eq. (10) are real. In this case, the growth rate
exists as real constants. Therefore, this growth rate can be a
positive or a negative number. For a given set of the model
parameters and a particular value of wave numbers, we can
specify its sign. Positive values of the growth rates o means
the stability of the system because of the vanishing long time
¢~". In this case, the system remains stable under the modu-
lation. While its negative values are the signature of instabil-
ity. The perturbation diverges without limit as the time ¢
increases and the corresponding solution is said to be modu-
lationally unstable. Because of the discreteness of the lattice,
wave numbers ¢ and Q that differ by 27 correspond to the
same wave. Thus, the present study can be restricted to the
first Brillouim zone [—m,7]. Finally, [0, ] is considered,
since only the direction of propagation is changing for —¢q
and —Q. Based upon the roots of Eq. (8), which is related to
the dispersion relation, the results obtained for the stability
diagram can be obtained either by the analytical solutions or
numerically solving Eq. (8), and the results would be the
same. But the stability diagram results presented here are
obtained by numerical computation. With the above estab-
lished criteria, the main features of the instability are high-
lighted in Fig. 1, where the stability diagram is plotted in a
(Q,q) plane. The dark regions correspond to area of instabil-
ity while the white are regions of stability. In these instability
regions, at least one of the four growth rates o(g, Q) is nega-
tive [o(q,Q)<0]. As stated previously, when the second
neighbor coupling coefficient is negative (g’ <0) and is
larger in absolute value than &/4, there is a competition be-
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FIG. 1. (a) Frustrated regions of instability (black area) on the (¢,Q) plane. ¢o=-0.11, ¢;=0.22, ¢,=-1.34, ¢3=3.0, ¢,=0.046, ¢
=0.23, ¢;=0.22, ¢’ =-0.23, u=0.25. (b) Regions of instability (black area) on the (¢,Q) plane in the absence of second neighbors coupling.

The same parameters as in (a), but with ¢;=0.0 and &’ =0.0.

tween the first- and second-nearest-neighbor coupling. This
competition gives rise to “frustrated states.” Figure 1(a) pre-
sents the case of a frustrated modulational instability region
plotted in the (Q,q) plane. The model parameters used are
those measured by Willaime et al. [15]: ¢y=-0.11, ¢;=0.22,
c,=—1.34, ¢3=3.0, ¢,=0.046, £=0.23, ¢;=0.22, &'=-0.23,
and u=0.25. It has been obtained that the area of instability
region (black region) grows while increasing either u or (),
[€), can be chosen to be equal to w by using the dispersion
relation (3)]. However, plane waves with ¢>0.77 are al-
ways stable with respect to any perturbation irrespective of
the value of Q. One can also observe in Fig. 1(a) that, for
long-wavelength (small Q) perturbations, a carrier wave with
very small ¢ is unstable, but is stable for a carrier wave with
large g upper to the middle of the Brillouin zone. On the
other hand, when restricting ourselves to nearest-neighbor
coupling (&' =0), the area of the instability region shrunk, as
seen in Fig. 1(b). This figure indicates that a carrier wave
with small g is stable to long-wavelength perturbations, but
unstable against short-wavelength perturbations. This is dif-
ferent from what was reported in [30] for the monatomic
Klein-Gordon chain that is also subject to discreteness ef-
fects and nearest neighbor coupling. In the Klein-Gordon
chain, the small-Q region is always the unstable region as
long as the instability occurs for the corresponding carrier
wave, while the large-Q region is always the stable region.
A number of studies of various lattice dynamical models
have shown that the existence of intrinsic localized modes is
always accompanied by the instability of corresponding ex-
tended nonlinear plane waves [30-32]. Another main effect
of modulational instability is the creation of localized pulses
[33]. This is in agreement with the results presented above,
which show that, for negative values of the growth rates o,
the system is unstable. Consequently, nonlinearity can induce
the formation of localized patterns in the unstable region.

III. PROPAGATIVE PATTERNS OF THE MODEL
EQUATION

According to the above analytical results based on a linear
stability analysis, the stability of a nonlinear plane wave with
wave number ¢ modulated by a small-amplitude wave of
wave number Q is determined by the dispersion relation (8).
Linear stability analysis can determine the instability domain
in parameter space and predict qualitatively how the ampli-
tude of a modulation sideband evolves at the onset of the
instability. However, such an analysis is based on the linear-
ization around the unperturbed carrier wave, which is valid
only when the amplitude of the perturbation is small in com-
parison with that of the carrier wave. Clearly, the linear ap-
proximation should fail at large time scales as the amplitude
of an unstable sideband grows exponentially. Furthermore,
the linear stability analysis neglects additional combination
waves generated through a wave-mixing process, which, al-
beit small at the initial stage, can become significant at large
time scales if its wave number falls in an instability domain.
Linear stability analysis therefore cannot tell us the long time
evolution of a modulated nonlinear plane wave. In order to
check the validity of our analytical approach and to get an
idea of what kind of dynamical patterns one might obtain in
the system under small perturbations, we carried out numeri-
cal simulations of the DCGL equation by using the standard
fourth-order Runge—Kutta method, with an integration time
step of 0.055. In our numerical simulations, the initial con-
ditions that are typically at time #=0, are coherently modu-
lated plane waves of the form

W(t=0)=[W,+ 7 cos(Qn)lexp{i[gn + 0.01 cos(Qn)]}.
(13)

Here, the amplitude parameter W, is obtained from Eq. (3),
and the modulation amplitude is such that 7<<Wy(7@
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FIG. 2. Modulational instability. The same parameters as in Fig. 1(a). (a) Train of patterns with ultrashort wavelength propagating
through the system at time 600 units and for the wave numbers g=137/20, Q=1/100. (b) Unstable patterns with a short wavelength, at time

700 units corresponding to the wave numbers g=m/100, Q=13/20.

=W,/100). As a specific example, we consider a system in-
volving N sites with N=400, with periodic boundary condi-
tions. First, let us consider the case g=13w/20 and Q
=1r/10. That corresponds to a point labeled in Fig. 1(a) dis-
playing the instability region in the (Q,q) plane. According
to Fig. 1(a), the instability is predicted for a wave with these
wave numbers. For these values of wave numbers, the initial
condition is introduced in the system. One obtains an inter-
esting phenomenon: the wave displays an oscillating and
breathing wave behavior. The amplitude of the wave gener-
ated by wave motion is modulated in the form of a train of
small amplitude with a short wavelength. Each component of
the train has the shape of a soliton object. To illustrate this,
we present in Fig. 2(a) the amplitude of the wave pattern at
time 600 units. Let us consider a wave with g=/10 modu-
lated at a wave number Q=137/20. The corresponding point
in the (Q,q) plane in Fig. 1(a) lies in the instability region.
We observe that the initial solution is also disintegrated into
a train of patterns. Each element of the train also has the
shape of a soliton object. But their number has drastically
decreased as shown in Fig. 2(b) at time 700 units. The value
of the wave number of modulation influences the number of
waves oscillating with a soliton shape in the train. This phe-
nomenon can be understood in the sense that, in this range of
Q (modulated wave number), nonlinear effects in the discrete

lattice lead to the creation of an extended nonlinear plane
wave with a particular fact that the amplitude appears as a
train of solitonlike objects. In the case of discrete electrical
transmission lines, the propagation of such nonlinear wave
packets has led to the observation of envelope solitons that
propagate with constant velocity, and localized modes that
undergo velocity fluctuations due to lattice dispersion when
they propagate [32].

Figure 3 shows the time evolution of a modulated plane
wave with the same parameters as those of Fig. 2. As it has
been mentioned above, MI can create spatially localized pat-
terns and modes. Stable spatially localized states have been
observed experimentally in binary fluid mixtures [34], elec-
troconvection in nematic liquid crystals [35], autocatalytic
chemical reaction [36] and in granular media undergoing
Faraday instability [37]. Two different mechanisms were
identified to work for the localized states. The first is the
feedback mechanism, which was suggested and shown to
work for the quintic Ginzburg-Landau equation with a desta-
bilizing cubic term and complex coefficients [38,39], which
arises for weakly inverted bifurcations to traveling waves.
While the second mechanism, namely the trapping mecha-
nism, based on the interaction between small and large wave-
lengths has been suggested by Pomeau [39,40] and examined
in detail for walls in Ref. [41]. Figures 3(a) and 3(b) confirm
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(b)

FIG. 3. Localized patterns. The same parameters as in Fig. 1(a). (a) Localized patterns at wave numbers, g=137/20, Q=m/100. (b)
Localized patterns with a different shape at wave numbers, g=/100, Q=137/20.

these predictions showing the creation of two types of local-
ized patterns from a flat initial condition. To be more ex-
plicit, we display in Fig. 3(a) stable localized patterns with
one shape. We observe that the prediction of instability from
linear stability analysis is well recovered in this case: the
principal satellite modulation Q that is considered in the ini-
tial condition produces localized patterns with one shape. On
the other hand, Fig. 3(b) presents a different case, where we
observe localized patterns of various sizes. We explain this
special feature by the fact that, although the linear stability
analysis neglects additional combination mode waves, these
latter are spontaneously generated through wave-mixing pro-
cesses during the propagation.

Let us now illustrate the case g=2m/5 and Q=m/2. This
point lies in the stability domain in Fig. 1(a). The initial
excitation may move without changing its form as coherent
states. The wave pattern displayed by the set of the preceding
wave number is that of a plane wave with a sinusoidal form,
with a constant amplitude that is not sensitive to any modu-
lation as the time increases. Therefore, the system is said to
be stable under the corresponding modulation. This feature is
described by Fig. 4(a) at time 1000 units. The wave-mixing
process that has been described above is interesting because,
although only one modulation wave is initially launched in
the system, one notes the presence of other waves during the
propagation of the main wave. We refer to the appearance of
these waves as secondary waves. To illustrate this point, we
present in Fig. 4(b) the spatial Fourier transform W, (k) of
Fig. 4(a). Figure 4(b) presents three peaks denoting the sinu-
soidal character of the waves propagating in the system. The
major peak is due to the initial plane wave previously intro-
duced through the model, while the two others can be called
secondary waves because they have spontaneously appeared
during the propagation. In the case of modulational stability,
we remark that there is no localized pattern as it is viewed in
Fig. 4(c).

Coherent structures and chaotic states are well known as
two distinct states of nonlinear dissipative wave systems.
However, these states sometimes occur and propagate to-
gether in some systems. Thus, a coherent state and a chaotic
state coexist and these two distinct structures are separated

with a sheer interface [42,43]. One common feature of MI is
the evolution from a single mode after a sufficiently long
time into a nearly chaotic state. Therefore, numerical inves-
tigations can be used to examine the long-time evolution of a
modulated extended nonlinear wave. Let us investigate this
with the following model parameters: cy=2.1, c;=-4.3, ¢,
=-0.2, ¢3=-0.08, c;=-1.2, £=-0.05, ¢;=0.0, &¢'=-0.016,
pu=1.5, and for the wave numbers g=/14, Q=m/7. The
point labeled by this wave number lies in the instability re-
gion. But, we observe that the amplitude of the wave fluctu-
ates randomly in space and time as its time evolution shown
in Fig. 5(a). This follows because albeit linear stability
analysis neglects additional combination waves generated
through wave-mixing processes, these latter can become sig-
nificant and drive the system in a chaotic regime if the wave
numbers fall in an unstable domain. To illustrate this point,
we will study the behavior of the wave with the help of the
discrete spatial Fourier transform of W,(z),

N-1

m(p,1) = 2, W,(0)e" ™) with
n=0

N <
PR

Bz

(14)

The growth rate of each individual Fourier components
can be obtained by the least square fitting of |m(p,?)|> over
the first few periods during which time it is expected to grow.
According to Fig. 5(b), the “normally” unstable modulation
presents an exponentially increasing of the amplitude of dif-
ferent modes generated by the nonlinearity during the first
moment. At this stage, the amplitude of these combinations
decreases exponentially; then increases again until their am-
plitude reached the amplitude of the carrier wave. The pro-
gressive buildup of combination modes due to nonlinear cou-
pling induces wave interactions that were not included in our
linear stability analysis, and eventually all carrier waves
evolve into a chaoticlike state, where all possible wave-
lengths are present (see Fig. 5(b) for a few of them). In this
state, the amplitude of some modes becomes sometime much
higher than the amplitude of the original wave. The chaotic-
like state mixing all wavelengths is obtained around #=500
units of time.
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FIG. 4. Modulational stability at time 1000 units for the parameters. The same parameters as in Fig. 1(a). The wave numbers are
q=2m/5, Q=/2. (a) Propagation of stable patterns through the system. (b) The nonexistence of localized patterns in modulational
phenomena. (c) Fourier transform of W(k) corresponding to Fig. 4(a), which shows the existence of combination waves in the system.

IV. CONCLUSION

In this paper, we have investigated both analytically and
numerically MI of nonlinear plane waves in a system of
coupled oscillators. The perturbation of the initial solution
has been considered as a combination of progressive and
regressive plane waves. The frequency has been taken in its
complex form where the imaginary part measures the growth
rate of perturbations. The resulting dispersion relation is a
fourth-order polynomial. Numerically, fairly good agreement
is obtained with analytical results confirmed by the propaga-
tion of modulated patterns which have the shape of a soliton
object when wave numbers lie within the unstable area of
Fig. 1. Initially neglected in the linear stability analysis,
combination waves appear spontaneously and lead to local-
ized patterns. We have found that modulational instability is
related to localized patterns. However, the spatiotemporal
chaotic state can be crudely characterized by the fact that the
amplitude evolves erratically in space [15,42]. This state
arises because additional combination waves generated

through wave-mixing processes drive the system in a chaotic
regime. In forthcoming studies, it will be interesting to de-
termine soliton solutions and study the origin of combination
waves of this model.
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APPENDIX: MODULATION STABILITY ANALYSIS

To investigate the modulational instability, the initial so-
lution is perturbed in amplitude and phase. Therefore, it fol-
lows a linear and homogeneous algebraic system that arises
in the form Mu=0, with u*=[b, i, b, 1], where the matrix
M is defined by
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FIG. 5. Spatiotemporal chaotic states at wave numbers g
=m/14, Q=27/7, cy=2.1, c;=—4.3, c,=-0.2, c3=—0.08, c4,=-1.2,
£=-0.05, ¢;=0, ¢’ =-0.016, u=1.5. (a) Chaotic time evolution of
|[Wy|? at position N=100. (b) Time evolution of the amplitude of the
Fourier components at wave number ¢ (the solid line), 3¢ (dashed
line), (g+Q) (dotted line), and (¢—2Q) (dash-dotted line), for wave
number g=1/14 modulated at wave number Q=2/7. The evolu-
tion of the Fourier components shows chaotic behavior of the lat-
tice. A logarithmic scale is used for the amplitude of the Fourier
components.

o+m;  my ny 0

m o+m m 0
M= ¢ > o . (A

ny 0 o+mg My
mlo 0 my o+ mi,
The matrix coefficients m;(j=1,...,12) are defined as fol-

lows:
my =— (1 +2c; cos Q)Wg + 2&[cos(q + Q) — cos q]
+2¢&'[cos 2(qg + Q) — cos 2¢q],

m, =0, —2cg[cos(qg + Q) — cos ¢q]
—2c1&'[cos 2(g + Q) — cos 2¢],

msy=m,;=-— (1 + 2C3 COS Q)W%,

my=—Q,— (cy+ 2¢c4 cos Q)W; + 2¢,8[cos(q + Q) — cos q]
+2c1e'[cos 2(g + Q) — cos 2¢],

PHYSICAL REVIEW E 72, 036220 (2005)
ms =2g[cos(q + Q) — cos g] +2&'[cos 2(qg + Q) — cos 2¢],
o 2
mg=myo=—(c3+2cy cos Q)W

mg =— (1 +2¢; cos Q)W3 + 2&[cos(q — Q) — cos q]
+2¢&'[cos 2(g — Q) — cos 2q],

my=—Q,—2c,e[cos(g — Q) — cos ¢]
—2c&'[cos 2(g — Q) — cos 2¢],

my; =, +—(cy+ 2c¢4 cos Q)Wé +2c,g[cos(g— Q) —cos q]
+2c1€'[cos 2(g — Q) — cos 2q],

my,=2¢[cos(qg — Q) — cos g] + 2&'[cos 2(q — Q) — cos 2¢].
(A2)

The following equation Mu=0 becomes an eigenvalue equa-
tion with a nontrivial solution, when Eq. (8) is verified. In
this case, the coefficients of the dispersion relation [Eq. (8)]
are written as

K1=m1+m2+m3,

Ky =msmg + mymy, — mymy + msim o + mghiyp — Mol

— mymy3 + myms + nymg,

K3 = ms(mgmy — mom,,) + myy(myms — moymy) +my(mgm,
= mgmyy) + my(myme — mams) + mg(myms — mom,)

+ my(mom g — mymyy),

Ky = myms(mgmy, — momy,) + myme(mqmy, — moniy)
+ myms(mom g — manyp) + mymy(momy | — mgny,).
(A3)

For precise behavior of the system, we make successive
transformations of the dispersion relation (8) to reach Egq.
(11). The coefficients of Eq. (9), K, K{, and K}, are defined
by

3 1, 1
K)=- §K§ +K,, K|= gkg - S KoKy, Ko=- —K;

1 1
+ EIQK% - KK+ K,

those of Eq. (11), Ky, K7, are defined by

2 8
Ky = K3 - SK)K) - (K})2.

1 4
K//=__ /2__ /’
! : 0 27 3

3 3
(A5)

Solutions of Eq. (9) can be rewritten as a function of solu-
tions @11y, Ta11)> T3(11)s

o= [(0'1(11) - 2K£/3)1/2 + (0'2(11) - 2Ké/3)1/2
+ (o311) — 2K3/3) 1272,
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Oy = [— (0'1(11) - 2Ké/3) - (0'2(11) - 2K£/3)
+ (o311) - 2K3/3)'2]12,

03 = [((71(1 )~ 2K§/3)”2 - (02(1 1)~ 2K§/3)”2
+ (o3 — 2K5/3) 1272,

PHYSICAL REVIEW E 72, 036220 (2005)

oy =[(o11) - 2K3/3)"? = (0911) - 2K5/3) 12

= (o311) - 2K3/3)"2]/2. (A6)

We can point out that, if one of the solutions
T1(11) O2(11)» O3(11) is less than K3 /3, the growth rate must be
complex.
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